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Abstract

We review univariate regression models where the functional form is piecewise linear
and continuous. We do not strive for mathematical completeness, but focus rather

on explaining some of the formulas behind the implementation in the Python project
segreg.
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1 Introduction

Segmented regression models are defined as having breakpoints where the functional form
changes. These models may be used to study changes in regime, or simply as flexible fits
to non-linear data. There are exact algorithms for parameter estimation that reduce to
calculating a series of ordinary least squares (OLS) regressions. For an introduction to the
subject, we mention [10], [5], [11], [7] and the references contained therein.

In this document, we shall only describe segmented regression for univariate data. We note
that all of the information we present is well known. We are only providing a review and
explaining details of the algorithms.

When modelling data with segmented regression models, a common problem is determining
the number of breakpoints. For this we prefer the Bayesian Information Criterion (BIC), for
which we provide a brief overview in Sections 6 and 7.
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1.1 Regression Model

The models we shall consider have the general form

y(x) = f(x) +e(x) (1.1)

where x and y are univariate. We assume the errors ¢(x) are independent and identically
distributed with mean zero and constant variance.

1.2 Segmented Regression Model

We only consider segmented regression models for which f(z) is piecewise linear and con-
tinuous. We call the points where the functional form changes breakpoints. We also assume
that the breakpoints are unknown parameters in the model. It is this aspect that makes
segmented regression estimation non-trivial relative to OLS.

The function f(x) will have the general form

;

vy +my(x —up) x < uy
Vg + Mo (T — us) up < x < up
vz + mz(x — us3) uy < x < ug
f(x) = (1.2)
g + mp(r — ug) Uy < x < uy
| vk + M1 (z —ug) up <x

We call the points where the functional form changes breakpoints. So the function (1.2) has k
breakpoints {uy, us, ..., ux}. The way we have parameterized the function, the breakpoints
in the x-y plane are {(u1,v1), (ug,va), ..., (ug, v}

We will only consider continuous functions of this form. This implies further restrictions on
the parameters which we will treat below.

The estimation formulas below can all be expressed using matrix operations. However,
the sampling distributions of segmented regression parameters can often be highly skewed,
which leads us to employ bootstrap techniques for calculation of confidence intervals and
other statistical tests. Such tests involve many calculations of the parameter estimates via
repeated simulations. As such, we wish to make the calculations as fast as possible. This has
motivated us to formulate the parameter estimates without matrix operations. The resulting
formulas are much faster to compute, albeit rather cumbersome.

1.3 Notation

Given some data, we shall label the number of observations by N.



For summations, an unadorned summation symbol Z will imply summation over all possible
N

. . . def

indices, ie: Y=Y
i=1

We shall use integer labels under summation signs to indicate that the sums are over sets as
defined in the following table.

Type Label Indices

One Breakpoint 5 (i < i}

Two Breakpoints 2 {zilur < z; <ug}
3 {zi|ug < x;}

We shall denote
e the cardinality of each set as N o Z 1
k

e the indicator function by

def |1 ifze A
Lale) = {0 else

~

e cstimates of parameters with hat notation, eg: 3

We shall abbreviate ordinary least squares as OLS, residual sum of squares as RSS, maximum
likelihood estimate as MLE, and probability distribution function as pdf.

2 No Breakpoint

The simplest case of segmented regression is when there is no breakpoint. This case is the
standard ordinary least squares. We may express the model as

Y=X0+e
where
Y1 1 = £1
Y1 = y.Q Xnws & 1 " Basa & (U) ensa 8‘2
YN 1 zy EN

We label the components of § in this way in order to be consistent with parameter labeling
we use for segmented regression. The estimate for J is then

B=(X"X)" Xy
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It is easy to see that the matrix operations will involve some redundancies. With a view to
speeding calculation, especially for the segmented regressions with breakpoints, we will solve
the regression in the following way.

Lemma 1
Consider the ordinary least squares model

y=v+mx+e¢e

The regression estimates for the parameters v and m are

NZyixi—Zinwi
NY w2 = (X )

6:%2%—%2%

Proof. The regression parameter estimates are obtained by minimizing the RSS which we
write as

m =

N
RSS ¥ G(v,m) ¥ > [y — (v +may))?
i=1
So we wish to solve the following optimization problem.
argmin G(v,m)
One may show that G(v, m) is convex, implying that it has a unique global minimum. Solving
for critical points of the function we have

oG al
o —2;[%— (v + ma;)] =0
oG al
o = 22l 0 ma] =0
which yields
1
v = N [yz mxl]

Substituting the expression for v into the expression for m, we obtain estimators (denoted

with hat)
def NY yixi— > iy, o (2.1)
NY a2 — (3 )

ﬁd:ef%zyi—%zﬁﬂi

m



3 One Breakpoint

With only one breakpoint, the model takes the form

f() = {vl +mi(z—w) z<u (3.1)

v +me(r —uy) w <

Here we have parametrized two half-lines with slopes my, ms which meet at a common vertex

(UI,U1>.

(w1, v1)

We will estimate parameters by means of regression. To this end, we define the residual sum
of squares function as

G(Uhvl, my, m2) « Z(yz - f(lfz))Q
= Z[yz — v —my (2 — wp)]? + Z[yz — vy — ma(z; —uy))?

2

(3.2)

3.1 Estimate for Fixed Breakpoint

When solving for parameters which minimize G, if we fix u;, the remaining parameters that
minimize G are easily determined. Suppose we fix a value for u; such that z; < u; < x;1.
Then we may write f(z) in the form

flz) =vi +mi(x —u)l<y, +mo(r —uy)ly, <o (3.3)

where v, m1, mo are the unknown parameters and 1 is the indicator function defined as

Lt d:ef{1 ifte A

0 else



3.1.1 Regression Formula

We may apply OLS to equation (3.3) to determine the parameters vy, my, my minimizing
(3.2) for this fixed value of u;. In matrix form, it looks like

Y=X0+e
1 1 — Uy 0
U1
def | 1| x; —u 0 def
XN><3:e 1 0 ! T —u 53x1=e my
i+1 1 mo
1 0 IN — Uy

3.1.2 Brute Force Calculation

As mentioned in Section 1.2, the typical regression matrix solution will involve many redun-
dant calculations, and can be faster computationally to solve directly for the parameters by
brute force calculation. The formulas are shown in Section 5.2.

3.2 Estimate for Unknown Breakpoint

Let us denote the function of w; which computes the RSS with u; considered fixed, as g(u;).
That is

g(uy) & argmin G(uy,v1,my, ma) (3.4)

v1,Mm1,m2

Minimizing the function G(uy, vy, mq, ms) globally over all the parameters {u, vy, my, mo} is
the same as finding w; which minimizes g(u;). However, there are some difficulties in using
g(uy) directly to find the minimum. Although g(u;) is continuous, it is unfortunately not
differentiable at the data points u; = x;. Furthermore, it can possess multiple local minima,
even for moderate sample sizes. Nonetheless, it is possible to give a closed-form algorithm
which solves for the global minimum of G.

3.2.1 Hudson’s Algorithm

We present a closed-form algorithm due to Hudson which solves for the minimum of the
RSS, G. This was first described in [2], but see also [11] and [7] for more description and
generalizations of the method.

Let us order the data x1 < x5 < --- < xy. It is easy to see that for x; < u; < xy the
minimizer of GG is given by taking the the right-hand-side line to be that determined by OLS
for the data {(z2,¥2), ..., (xN,yn)}, and taking the left-hand-side line to be the straight line
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from (x1,71) to the right-hand-side line. A similar result holds for zy_1 < u; < zy. So
g(uy) is constant on the intervals [z1, 2] and [zy_1, ZN].

Next we consider the intervals x; < u; < x;1 for e =2,3,..., N — 2. On such an interval,
the function G is smooth. (Simple calculation shows that g—ucl is discontinous at u; = ;).
To check for critical points of the function G on the interval z; < u; < x;41, we solve

oG 9G  aG  aG

= 2= = 0 3.9
3u1 8?]1 8m1 am2 ( )
g—g = 0 implies
my Z i — v = ma(zi — w)] +me Z i —v1 = ma(z; —w)] =0 (3.6)
1 2
85 — 0 implies
Z [yz — U1 — ml(xi — Ul)] -+ Z [yz — V1 — mg(xi — Ul)] = O (37)
1 2
;—Wi = 0 implies
Z lyi —v1 —ma(z; —w)] (25 —wa) = 0
1
;—ni = 0 implies

> i — v = ma(zi — )] (2 — wy) =0

2

Now, (3.6) and (3.7) together imply
m
(1 — Ei) ; [yz — U1 — mg(xi — Ul)] = 0

There are two cases to consider. First assume mj # mso. Then

Z ly; — vy —ma(z; —up)] =0

2

and (3.7) implies

Z [y — vy —ma(z; —uq)] =0

1

So the system (3.5) becomes

Z [yi — vy —my(z; —up)] =0



Dl — o= ma(z; —u)] =0
2 (3.9)
D v —vr = ma(z —w)] (= ug) =0
2
But (3.8) are just the equations which solve for OLS for the data set {(z1,v1),...(z;,y;)}
and (3.9) are the equations which solve for OLS for the data set {(x;41,y;+1),-.. (N, yn)}-
We can easily see this by parameterizing the lines using the point-slope formula with the
point being (uy,v;) and the slopes m; and ms respectively. Setting the derivatives with
respect to the parameters equal to zero gives these equations (the normal equations).

We compute the closed-form OLS solutions for these two data sets. The slopes of the resulting
lines and the intersection of the two lines gives the critical points of G. If the u; coordinate
of the intersection of the two OLS lines lies in the interval (z;,2;11), then we have found
a critical point for G on this interval. Otherwise there are no critical points for G on this
interval.

If my = my, we are in the case of a line fit (ie: OLS) to the entire data set. Then every point
value for u; on the interval (z;,x;11) gives a minimum for G, and consequently the function
g(uy) is constant on the interval.

3.2.2 Algorithm For One-Breakpoint Segmented Regression

We thus have the following algorithm to find the argmin of G (3.2) by comparing the values
of g at all the critical points.

1. For each interval x; < uy < ;41 fori =2,3,..., N —2 solve OLS for the left-hand data
set and the right-hand data set. If the intersection of the two lines lies in the interval
(@i, xi11), then record the resulting value for g (3.4).

More precisely, solve OLS on the left-hand data set {x1, ..., z;}, obtaining a line fit with
slope m;. Similarly solve OLS and on the right-hand data set {z;;1,..., 2y}, obtaining
a line fit with slope mo. Find the intersection of the lines (uy,vy). If x; < Uy < 41,
then we record g(uy) = G(uy, vy, my, my) = RSS.

2. Record the values of g at the data points: g(x1), g(x2),...,g(zn).

3. Find the value of u; which gives the minimum value for g among the recorded values
in the previous steps. This is the solution.

We note that in practice, we add the restriction that there must be a minimum number of
distinct data points in each linear segment of the model. This avoids pathological fits and
overfitting that we would not wish to consider valid.

4 Two Breakpoints

With two breakpoints, the model takes the form



v1 +my(z — uy) <y

Vg — U
f(x) = vl—f—( 2 1)($—U1) u <o < ug (4.1)
U2 — U
Vg + ma(x — uy) Uy < T

Here there are three line segments. Continuity of f(x) allows us to parameterize the slope
of the middle segment in terms of the two endpoints (u1,v1) and (ug, va).

Y

(u2, v2)

(ub 1)1)

There are thus six free parameters, and the residual sum of squares function is

G(ur, v, 2, v2,my,ma) B3 (i — f(x))?
= Z[yz — vy —my(z; — Ul)]2+
1

S (222

2

Z[yz — vy — ma(; — ug)]®

3

4.1 Estimate for Fixed Breakpoints

Similarly to the case for a single breakpoint, when solving for parameters which minimize
G, it turns out that we may concentrate out vy, v9, mq, mo. That is, conditional on a values
for u; and us, the remaining parameters are all determined.

4.1.1 Regression Formula

Suppose we fix uq, us such that
Ty <Up < Tip1 <Tj < U < Tjg
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Then we may express the model (1.1) for the function (4.1) by writing the classical regression
formula

Y=X0+e
with Y; = f(z;) and
1 0 Tr1 — Uy 0
1 0 T; — Uy 0
1 _ Ziklul | iU 0 0 U1
def I _ , def | vy
XN><4 - : : : . 54><1 - m
_ mi—u xj—u1 0 0 1
U2 —Ujl U2 —Uu1 m2
0 1 0 Tjy1 — U2
0 1 0 TN — U2

4.1.2 Brute Force Calculation

However, as mentioned in Section 1.2, the typical regression matrix solution will involve
many redundant calculations, and it can be faster to solve directly for the parameters by
brute force calculation. The resulting formulas are shown in Section 5.3.

4.2 Estimate for Unknown Breakpoints

We fit the model again by minimizing the RSS. This time Hudson’s algorithm involves a
two-dimensional grid, but each step ultimately reduces to OLS regressions and function
evaluations, as before.

5 Formulas

We collect the brute-force formulas here to provide an easy reference for coding them.

5.1 No Breakpoint

FORMULA
Yy=v+mzx+e

PRECOMPUTE

N le ZI? Zyi ny Z?/ﬂ?i
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DEFINE

AL Z x; B Z z? c Yi D y? o Z Uil

ESTIMATES

_ NE-AC
"= NB_ A2
¢ A
YSNTN

RSS
> i — 0 — imay)’ = D — 20C — 2mE +0°N + 20mA + m’B

5.2 One Breakpoint

FORMULA

fla) = v +mi(z—w) <y

vi+me(r—uy) w <z
PRECOMPUTE
(for k =1,2)
Ne o Dowm Yo Dwme Yul Y v
k k k k k

DEFINE
(for k =1,2)

ESTIMATES FOR FIXED wuy
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BiCy  ByC

5 — B D, Dy 7 :Bl—vlcl 7 _B2_U102
! Ccz (2 ! Dy T D,
N L _ 2
Dy D,

RSS

Z [.%‘ — vy —my(x; — Ul)]2 + Z [?Ji — Uy — Moz — Ul)]z =

1 2
E — 21)114 + U%N - 2m131 — 2m232 + 2v1m1C'1 + 2?)1771202 + mlDl + m D2

5.3 Two Breakpoints

FORMULA
v +my (T — uy) r <
f(r) =< v+ (Uz_vl) (x—uy) wu <z<ug
U2 — U
Vg + ma(x — uy) uy < x
PRECOMPUTE
(for k =1,2,3)
Ne oo Domo dal dwo Dw D ww
k k k k k
DEFINE

(for k=1,2,3 and r =1, 2)

Ap = Zyz
k
Bk,r o Z%(% - Ur) = Z?Jﬂ?z — Up Z?/z
k k k
Crr €3 (@i —uy) = sz — u, Ny

k

Dy, d:CfZ(x — u,)? Zx —2ur2x,+u1

k k

def
E=) vy

F, d:efZ(x —uy)(x; — ug) Zx — (u1 + ug le—l—uluQNk

k
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ESTIMATES FOR FIXED w1, us

Further define

a def _N, + C12,1 _ Dz,z
D1,1 (U2 - U1)2
def Fy
bE ———
(ug —uy)
def Fy
= —3
(ug —uy)
dd:ef “ N, + C§,2 _ D2,1
D3,2 (Uz - U1)2
e Bi.C B
eclzf_A1+ 1,1 1,1+ 2,2
D1,1 (U2 - Ul)
f def As b 33,203,2 32,1
= —As _

D3,2 (Uz - Ul)

Then v; and v, are determined by solving the linear system

(¢ 0) () -0)

and
Py — B1,1 - Ulcl,1 Py — B3,2 - U203,2
1= — 5 2= =
D1,1 D3,2
RSS

~ def V2 — U1

Let m

Ug — U1

Z[% — 01 — 7 (2 — w)]® + Z[yz — 01—z — )

1 2
+ Z[yz — Uy — Mo (z; — up)]* =
3

E— 2@\1(141 + AQ) — 262143 — 27/1’\1131’1 — 27’?2,3271 — 27/7>L2B372
-+ 6%<N1 + N2> + 65]\73 + 261(7”%101’1 + 7/7\102,1) + 25}\27/7\71203’2
m%Dl,l + m2D2,1 + m%Dsg
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6 Log Likelihood

For a regression model defined as in Section 1.1, let us suppose that f depends on a finite
set of fixed model parameters we collect in a vector §. We shall use the notation f(z;6) to
denote the dependence of the definition of the function on the parameters 6. Let us denote
the pdf of ¢ by F(z).

If we assume that the errors € are normally distributed, the likelihood function for the set
of (iid) observations is
1 _=

N
F ZZ - (& 202
g = i1 V2ma?

Then the loglikelihood evaluated at the data, [(6), is given by

(0 =>" llog <¢%> _ i ;“((Ta;jw))z}

1

= —g log(27m) — glog (0?) — 252 Z(Z/z — fzi;0))° (6.1)

2

=

as a variable, we concentrate it out of the loglikelihood as follows.

ol
= 3 2~ F (i

Setting this expression to zero, we obtain

N Z x'm

Substituting this back into the loglikelihood (6.1) gives the following expression for the value
of the loglikelihood at the MLE

Considering the variance o

1B) =~ lo(2r) + - log (N) — 5 — o (3 (s — 7))

2 2 2
N N N N

where we denote the MLE as 8. We see that the loglikehood value at the MLE only depends
on N and the RSS.

7 Review of Bayesian Information Criterion

We will give a brief overview of several versions of the Bayes Information Criterion (BIC).
For more information, one may consult many textbooks and papers, including [4], [9], and
references therein.
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We begin by considering a set of » models

{My, My, .. . M,}
with prior probabilities

p(-/\/tl)a s 7p(MT)

We assume one of the models is the true model and

ZP(M’L) =1

We also assume each model M is associated with a parameter vector 6;, and let k; denote
the number of parameters in 6;.

By Bayes’ Theorem, the posterior probability that M is the true model, given the data D,
is

p(DIM;)p(M;)
> iz P(DIM;)p(M;)
The most common situation is to assume that all models are equally likely a priori. Then
we have
p(DIM;)
> i1 P(DIM;)

Since the denominator in (7.2) is the same for each model, it follows that the model with
the highest probability of being true is the one for which p(D|M;) is largest.

p(M;|D) = (7.1)

p(M,|D) = (7.2)

We may compute
p(D|IM;) = /P(D|9j,Mj)P(9j|Mj)d9j

The following approximation gives rise to the traditional BIC.
. ks
log p(D|M;) ~ log p(D|0;, M;) — 5 log N

where 9/; is the maximum likelihood estimate of §; and N is the size of the data. Using the
notation for the log of the likelihood function, l(@?) Log p(D|é\j, M), we write

ks
log p(D|M;) = 1(0;) — 5 log N

The traditional BIC is defined as —2 times this expression, namely

def

BIC; € —21(6;) + k;log N (7.3)

Then minimizing the BIC over the set of models is the same as maximizing log p(D|M,),
hence p(D|M;), hence p(M;|D), and so selects the model with the highest posterior prob-
ability.
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Using the BIC approximation with (7.2), we may compute the model probabilities as

~ k.

p(DIM;) 003 e ?
Dy _ ) 7.4
p(M;|D) S p(DIM:) o7 ol 1o (7.4)

Remark 1 R
The better the fit 1(6;), the lesser the BIC. However, this is weighed against the term k;log N,
which we view as a penalty term involving the number of parameters in the model.

7.1 Bayesian Model Averaging

For some quantity of interest, A, such as a predicted future observation, we have
p(A[D) = p(A[D, M;)p(M;|D)
i=1

So the distribution p(A|D) is a mixture distribution of each model p(A|D, M;) with weights
p(M;|D). In like manner we have the expected values

B1AID] = Y FIAID, Mp(M, D)

7.2 BIC Properties

Notice that if we add a constant to all the exponent terms in (7.4), the model probabilities
are unchanged. Equivalently, adding a constant term to the BIC does not affect the model
selection.

For a set of regression models y = f;(x) + ¢;, with normal errors ¢;, consider the loglikelihood
of the 5™ model

~ N N N N
[(0;) = —= log(2m) + - log (N) — o — = log (RSS))

(where we have dropped the dependency of RSS on the estimated parameter vector 5) Since

the term N N N
5 log(27) + 5} log (N) — 5}

is the same for all models, we can subtract it from each model’s BIC and write (7.3) as

BIC; ¥ Nlog (RSS;) + k;log N (7.5)
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and simlarly write (7.4) as

k.
e % log (RSS;)— log N

k.
Zr . 6—% log (RSS;)—+ log N

1=

p(M;|D) =

We can re-express this in various ways. For example

k
—&log (RSS1)— 3L log N

(&
M|D) = 7.6
p( 1‘ ) 2221 6—%log(RSSi)—%logN ( )
1
— y— T (7.7)
1+ <§§§;> Nialki—ks) o (_ggg;> Nzki—ks)

It is clear how the relative residual sum of squares and number of parameters contribute to
each model weight.

Remark 2
In the definition of BIC, sometimes a scaled version of (7.3) will be used. As long as we
scale by a positive constant, it does not affect selection of the minimum BIC-valued model.

7.3 BIC Variants

For segmented regression models (and more general breakpoint models), there is some debate
about whether more penalty is needed than the traditional BIC provides. We will give a
brief overview of two modifications of BIC, which we label HOS and LWZ.

7.3.1 HOS

In [1], the authors consider the BIC in the form (7.5) (scaled by +). They propose a
modification that has each breakpoint contributing three times to the parameter count. For
example, for a breakpoint model with p breakpoints and a total parameter count of k (where
k includes the number of breakpoints), the modification would use a modified parameter
count, kgos, of k+ 2p. The BIC thus takes the form (for the case of normal errors)

BIChos % Nlog (RSS) + (k + 2p)log N (7.8)

This BIC formulation is developed in an asymptotic context. We consider also an interme-
diate modification of BIC by having each breakpoint contribute twice to the total parameter
count. This is studied in [6], where it is motivated by (asymptotic) results in [12]. The BIC
criterion in [12] is interesting in that the penalty term depends on the configuration of the
breakpoints. See also [3], where a number of BIC variants are considered and discussed.

For segmented regression models with p breakpoints, the number of parameters (not includ-
ing parameters modeling the residual distribution) is 2p 4+ 2. So the standard BIC is

BIC = Nlog (RSS) + (2p+ 2)log N (7.9)
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The intermediate version of HOS is then
BICHos & Nlog (RSS) + (3p +2)log N (7.10)
while the original version of HOS is

BICros.2 % Nlog (RSS) + (4p + 2)log N (7.11)

7.3.2 LWZ
In [8], the authors propose the following modification to (7.5).

BICwz % Nlog (RSS) + keo(log N)2t (7.12)

where ¢y and Jy are tuning parameters. Based on simulation studies, they choose ¢y = 0.299
and dyp = 0.1. We note that their formulation includes a degree-of-freedom adjustment which
is immaterial for the segmented regression models we consider, so we do not include it.

Here we plot the penalty terms of these BIC variants. Specifically, we plot BIC'—N log (RSS).

ONE BKPT BIC Penalties
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TWO BKPT BIC Penalties
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